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Figure 1: Our system automatically captures high-fidelity facial performances using Internet videos: (left) input video data; (middle) the
captured facial performances; (right) facial editing results: wrinkle removal and facial geometry editing.

Abstract

This paper presents a facial performance capture system that auto-
matically captures high-fidelity facial performances using uncon-
trolled monocular videos (e.g., Internet videos). We start the pro-
cess by detecting and tracking important facial features such as the
nose tip and mouth corners across the entire sequence and then use
the detected facial features along with multilinear facial models to
reconstruct 3D head poses and large-scale facial deformation of the
subject at each frame. We utilize per-pixel shading cues to add fine-
scale surface details such as emerging or disappearing wrinkles and
folds into large-scale facial deformation. At a final step, we iter-
ate our reconstruction procedure on large-scale facial geometry and
fine-scale facial details to further improve the accuracy of facial
reconstruction. We have tested our system on monocular videos
downloaded from the Internet, demonstrating its accuracy and ro-
bustness under a variety of uncontrolled lighting conditions and
overcoming significant shape differences across individuals. We
show our system advances the state of the art in facial performance
capture by comparing against alternative methods.
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1 Introduction

Facial animation is an essential component of many applications,
such as movies, video games, and virtual environments. Thus far,
one of the most popular and successful approaches for creating
virtual faces often involves capturing facial performances of real
people. Capturing high-fidelity facial performances remains chal-
lenging because it requires capturing spatial-temporal facial perfor-
mances involving both large-scale facial deformation and fine-scale
geometric detail.

An ideal solution to the problem of facial performance capture is
to use a standard video camera to capture live performances in 3D.
The minimal requirement of a single video camera is particularly
appealing, as it offers the lowest cost, a simplified setup, and the po-
tential use of legacy sources and uncontrolled videos (e.g., Internet
videos). Yet despite decades of research in computer graphics and
a plethora of approaches, many existing video-based facial capture
systems still suffer from two major limitations. Firstly, captured
facial models are often extremely coarse and usually only contain
sparse collections of 2D or 3D facial landmarks rather than detailed
3D shapes. Secondly, these results are often vulnerable to ambigu-
ity caused by occlusions, the loss of depth information in the pro-
jection from 3D to 2D, and a lack of discernible features on most
facial regions and therefore require a significant amount of manual
intervention during the capturing process.

In this paper, we present an automatic technique for acquiring high-
fidelity facial performances using monocular video sequences such
as Internet videos (Figure 1). The key idea of our approach is to use
both high-level facial features and per-pixel shading cues to recon-
struct 3D head poses, large-scale deformations and fine-scale facial
details in a spacetime optimization framework. We start the pro-
cess by automatically detecting/tracking important facial features
such as the nose tip and mouth corners across the entire sequence.
The detected facial features are then used to reconstruct 3D head
poses and large-scale deformations of a detailed face model at each
frame. This step combines the power of non-rigid structure from
motion, multilinear facial models, and keyframe based spacetime
optimization for large-scale deformation reconstruction. Next, we
utilize per-pixel shading cues to add fine-scale surface details such
as emerging or disappearing wrinkles and folds into large-scale fa-
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cial deformations. At a final step, We iterate our reconstruction pro-
cedure on large-scale facial geometry and fine-scale facial details to
further improve the accuracy of facial reconstruction.

Our final system is robust and fully automatic, allowing for high-
fidelity facial performance capture of large-scale deformation and
fine-scale facial detail. We have tested our system on monocular
videos downloaded from the Internet, demonstrating its accuracy
and robustness under a variety of uncontrolled lighting conditions
and overcoming significant shape differences across individuals.
We show our system achieves the state-of-the-art results by com-
paring against alternative systems [Garrido et al. 2013].

Contributions. This paper makes the following contributions:

• First and foremost, an end-to-end facial performance capture
system that automatically reconstructs 3D head poses, large-
scale facial deformation and fine-scale facial detail using un-
controlled monocular videos.

• An automatic facial feature detection/tracking algorithm that
accurately locates important facial features across the entire
video sequence.

• A novel facial reconstruction technique that combines facial
detection, non-rigid structure from motion, multilinear facial
models, and keyframe based spacetime optimization to com-
pute 3D poses and large-scale facial deformation from monoc-
ular video sequences. This step also requires estimating the
unknown camera parameters across the entire sequence.

• An efficient facial modeling algorithm that infers fine-scale
geometric details and unknown incident lighting and face
albedo from the whole sequence of input images. Our al-
gorithm builds on the state of the art in 3D face reconstruc-
tion from a single image [Kemelmacher-Shlizerman and Basri
2011]. However, we significantly extend the idea to recon-
structing dynamic facial details using monocular videos.

2 Background

Our system automatically captures high-fidelity facial perfor-
mances using monocular video sequences. Therefore, we focus our
discussion on methods and systems developed for acquiring 3D fa-
cial performances.

One of the most successful approaches for facial capture is based on
marker-based motion capture systems [Guenter et al. 1998], which
robustly and accurately track a sparse set of markers attached to the
face. Recent efforts in this area (e.g. [Bickel et al. 2007; Huang et al.
2011]) have been focused on complementing marker-based systems
with other types of capturing devices such as video cameras and/or
3D scanners to improve the resolution and details of reconstructed
facial geometry. Marker-based motion capture, however, is expen-
sive and cumbersome for 3D facial performance capture.

Marker-less facial performance capture provides an appealing alter-
native because it is non-intrusive and does not impede the subject’s
ability to perform facial expressions. One solution to the prob-
lem of marker-less facial capture is the use of depth and/or color
data obtained from structured light systems [Zhang et al. 2004; Ma
et al. 2008; Li et al. 2009; Weise et al. 2009]. For example, Zhang
and colleagues [2004] captured 3D facial geometry and texture over
time and built the correspondences across all the facial geome-
tries by deforming a generic face template to fit the acquired depth
data using optical flow computed from image sequences. Ma et
al. [2008] achieved high-resolution facial reconstructions by inter-
leaving structured light with spherical gradient photometric stereo
using the USC Light Stage. Recently, Li and his colleagues [2009]

captured dynamic depth maps with their realtime structured light
system and fitted a smooth template to the captured depth maps.

Reconstructing high-quality face models directly from multiview
images offers another possibility for marker-less motion cap-
ture [Bradley et al. 2010; Beeler et al. 2010; Beeler et al. 2011; Val-
gaerts et al. 2012]. In particular, Bradley and his colleagues [2010]
used multi-view stereo reconstruction techniques to obtain initial
facial geometry, which was then used to capture 3D facial move-
ment by tracking the geometry and texture over time. Beeler et
al. [2010] presented an impressive multi-view stereo reconstruction
system for capturing the 3D geometry of a face in a single shot and
later extended it to acquiring dynamic facial expressions using mul-
tiple synchronized cameras [Beeler et al. 2011]. More recently, Val-
gaerts et al. [2012] combined image-based tracking with shading-
based geometry refinement to reconstruct facial performances from
stereo image sequences.

The minimal requirement of a single camera for facial performance
capture is particularly appealing, as it offers the lowest cost and a
simplified setup. However, the use of a single RGB camera for fa-
cial capture is often vulnerable to ambiguity caused by the loss of
depth information in the projection from 3D to 2D and a lack of
discernible features on most facial regions. One way to address the
issue is to use person-specific facial prior models to reduce recon-
struction ambiguity (e.g., [Blanz et al. 2003; Vlasic et al. 2005]).
However, fine face details such as wrinkles and large lines cannot
be recovered with this approach. In addition, their tracking process
is often performed in a sequential manner and therefore requires
good initialization and manual correction for troublesome frames.

Recently, Cao and colleagues [2013a] proposed a 3D regression
algorithm that utilized personalized blendshape models for auto-
matic, realtime facial tracking/retargeting. Their approach, how-
ever, required an expensive offline training stage to construct
person-specific blendshape models. In addition, they focused on
tracking large-scale geometric deformation rather than authentic
reconstruction of high-fidelity facial performances. Concurrently
to this work, Suwajanakorn and colleagues [2014] propose a dense
3D flow algorithm coupled with shape-from-shading to reconstruct
high-fidelity facial geometry from monocular videos. Though their
method does not require person-specific scan/blendshapes, it uses a
photo gallery of the subject’s faces under different illuminations for
reconstructing a person-specific average facial model, which could
be unavailable for subjects in uncontrolled videos. Additionally,
instead of using a person-specific average facial model for facial
capture, we propose to use multilinear face models to reduce the re-
construction ambiguity of facial capture, thereby significantly im-
proving the robustness of the system. Finally, their method assumes
a known albedo map obtained from the subject’s photo gallery and
estimates lighting for every frame separately. In contrast, we use
the whole sequence of input images to estimate a single lighting
map and face albedo and therefore further improve the accuracy of
facial reconstruction.

Among all the systems, our work is most closely related to Garrido
et al. [2013], which captured detailed, dynamic 3D facial geometry
using monocular video sequences. Briefly, they first created a per-
sonalized blendshape model for the captured actor by transferring
the blendshapes of a generic model to a single static 3D face scan of
the subject. They then tracked 2D image features across the entire
sequence by combining sparse facial feature tracking and optical
flow estimation. At a final step, they reconstructed fine-scale facial
detail by estimating the unknown lighting and exploiting shading
for shape refinement.

Our research shares a similar goal but there are important differ-
ences. They relied on manual specification of correspondences be-



Figure 2: Our high-fidelity facial performance reconstruction pipeline. We first detect and track a sparse set of 2D facial features and
recover their 3D positions and unknown camera parameters using non-rigid SfM techniques. We then reconstruct 3D head poses and large-
scale facial geometry using the estimated facial features and camera parameters. We assume that the lighting and albedo are constant across
the entire sequence and extend shape-from-shading techniques to reconstruct fine-scale details throughout the whole sequence. Lastly, we
iteratively refine large-scale facial deformations and fine-scale facial details to obtain the final result.

tween a generic blendshape model and a static face scan of the sub-
ject to reconstruct a personalized blendshape model for the subject.
In addition, their optical-flow based tracking process required man-
ual intervention to improve the locations of 2D features in the first
frame for texturing. In contrast, we automatically detect facial fea-
tures across the entire sequence and use them along with multilin-
ear facial models to simultaneously compute 3D head poses and
large-scale deformations in a keyframe based optimization frame-
work. Garrido et al. reported that typical manual intervention for
a test video sequence required about 40 minutes, while our method
is fully automatic. In addition, they required a static 3D face scan
of the subject for transferring a generic blendshape model to the
subject. Our system does not have such a limitation and therefore
can be applied to capturing high-fidelity facial performances from
uncontrolled monocular videos such as Internet videos. Finally, we
have compared against their method and the comparison shows that
our system produces more accurate results than theirs (Section 8.2).

Our work on fine-scale detail reconstruction builds on the success
of modeling fine-scale facial geometry from a single image pro-
posed by [Kemelmacher-Shlizerman and Basri 2011]. In particu-
lar, Kemelmacher-Shlizerman and Basri [2011] introduced a novel
method for shape recovery of a face from a single image by using a
reference 3D face model and a reference albedo. We present three
novel extensions to their work. First, we extend their idea to shape
recovery of a dynamic face from a monocular video sequence. We
reduce the ambiguity of estimating lighting and albedo by utiliz-
ing the assumption that the lighting and albedo are constant across
the entire sequence. This allows us to estimate the unknown light-
ing coefficients and albedo based on shading cues across the entire
sequence. Second, we utilize results obtained from large-scale de-
formation reconstruction to initialize and guide the fine-scale ge-
ometry reconstruction process, thereby significantly improving the
accuracy, robustness and speed of the process. Third, they sim-
plified the reconstruction problem with linear approximations and
directly reconstructed depth in a least-square fitting framework. In
contrast, we propose a two-step optimization algorithm to sequen-
tially compute normal map and depth. As shown in Section 8.2, our
system produces more accurate results than their method.

The idea of using spherical harmonics approximation for fine-scale
detail recovery is similar to previous methods proposed by Wu et
al. [2011] and Valgaerts et al. [2012]. Our method, however, is dif-

ferent from theirs. First, we assume consistent lighting and albedo
across the entire sequence while they estimate both maps for each
frame. Additionally, we estimate a per-pixel albedo map while they
assume it is piecewise uniform. Finally, we measure the differences
between the synthesized and observed images based on RGB inten-
sities rather than high-frequency components (image gradients) be-
cause we also want to use recovered surface details to refine large-
scale facial deformation.

Our system is also relevant to recent successes in tracking 3D facial
expression using a single RGBD camera such as Microsoft Kinect
or time-of-flight (TOF) cameras [Weise et al. 2011; Bouaziz et al.
2013; Li et al. 2013]. Notably, Weise et al. [2011] used RGBD
image data captured by a single Kinect and a facial 3D template,
along with a set of predefined blendshape models, to track facial
expression over time. Most recently, Bouaziz et al [2013] and Li et
al. [2013] concurrently developed real-time monocular face track-
ers based on a run time shape correction strategy for combined
depth and video data. All these systems are focused on modeling
large-scale facial deformation rather than high-fidelity facial per-
formances. In addition, they are based on depth and image data
obtained by a calibrated RGBD camera rather than RGB images
captured by an uncalibrated video camera. It is not clear how their
approaches can be extended to capture high-fidelity facial perfor-
mances from uncontrolled monocular videos.

3 Overview

Our system acquires high-fidelity facial performances from uncon-
trolled monocular video sequences. The problem is challenging
because of complex facial movements at different scales and am-
biguity caused by the loss of depth information in the projection
from 3D to 2D and a lack of discernible features on most facial re-
gions. Unknown camera parameters and lighting conditions further
complicate the reconstruction problem. To this end, we decompose
high-fidelity facial performances into three scales: high-level facial
features, large-scale facial deformations and fine-scale facial details
and reconstruct them from coarse to fine scales. We start with the
coarse scale (high-level facial features). During the reconstruction,
we utilize the results in coarse scales to initialize and guide the re-
construction in fine scales. At a final step, we iterate our reconstruc-
tion procedure on large-scale facial geometry and fine-scale facial
detail to obtain the final output. The whole system consists of four



main components summarized as follows (Figure 2):

Facial feature detection and 3D reconstruction. We start the pro-
cess by automatically detecting and tracking important facial fea-
tures such as nose tip, eye and mouth corners in monocular video
sequences. We apply non-rigid factorization techniques to recover
3D feature positions and unknown camera parameters, which are
then used to initialize and guide the large-scale deformation recon-
struction process.

Large-scale deformation reconstruction. Sparse facial features,
however, do not provide detailed facial geometry. We introduce an
efficient reconstruction process that utilizes the recovered 3D facial
features and camera parameters, along with multlinear facial mod-
els, to model detailed facial geometry. We formulate it as a space-
time optimization problem by simultaneously reconstructing head
poses and large-scale facial geometry across the entire sequence.
This, however, requires solving a challenging nonlinear optimiza-
tion with a huge number of unknowns. We address the challenge
by developing a keyframe based optimization algorithm.

Fine-scale detail recovery. Recovering dynamic geometric details
such as wrinkles and folds is crucial for high-fidelity facial perfor-
mance capture. We have developed an efficient shape-from-shading
algorithm that infers fine-scale geometric detail, the unknown in-
cident lighting and face albedo from the whole sequence of input
images. Our method assumes both lighting and face albedo are
constant throughout the whole sequence. Starting from large-scale
deformation results, we simultaneously compute per-pixel normal
map of each input image and unknown incident lighting, and face
albedo by minimizing the inconsistency between the rendered and
observed image sequences. We further reconstruct a per-pixel depth
estimate from the reconstructed per-pixel normal map. Again, we
use keyframe based optimization to facilitate reconstruction of fine-
scale facial detail.

Iterative shape refinement. Large-scale facial geometry recon-
structed from sparse facial features often does not closely fit actual
facial geometry because of the lack of facial features in some fa-
cial regions such as cheeks. We address the issue by iteratively re-
fining large-scale facial geometry using the reconstructed per-pixel
normal map and then updating the per-pixel normal map with the
refined large-scale deformation.

We describe these components in detail in the following sections.

4 Feature Detection and Non-rigid SfM

Our first challenge is how to reconstruct 3D facial feature locations
from uncalibrated monocular video sequences. This is achieved by
detecting/tracking a sparse set of facial features across the entire
sequence and performing non-rigid SfM on 2D tracking features.

4.1 Facial Feature Detection

We have developed an efficient facial feature detection/tracking al-
gorithm that automatically locates important facial features across
the entire video sequence. Our key idea is to combine the power
of local detection, spatial priors for facial feature locations, Active
Appearance Models (AAMs) [Matthews and Baker 2004] and tem-
poral coherence for facial feature detection.

Briefly, we formulate local feature detection as a per-pixel classi-
fication problem and apply randomized forests [Amit and Geman
1997] to associate each pixel with a probability score of being a
particular feature. The outputs of local feature detectors are often
noisy and frequently corrupted by outliers due to classification er-
rors. This motivates us to employ geometric hashing to robustly

(a) (b) (c) (d)

Figure 3: Robust detection of facial features: (a) candidate fea-
tures after local detection and multi-mode extraction; (b) detected
features after outlier removal; (c) closest examples of detected fea-
tures via geometric hashing; (d) final output.

search the closest examples in a predefined database of labeled im-
ages and use a consensus of non-parametric global shape models
to improve the outputs of local detectors. Furthermore, we develop
an efficient facial registration method that integrates AAMs, local
detection results, and facial priors into a Lucas-Kanade registration
framework. Finally, we complement facial detection with tempo-
ral coherence to improve the robustness and accuracy of our facial
detection and tracking process.

4.1.1 Local Feature Detection

We introduce an efficient feature detection process which utilizes
the local information of a pixel (i.e., an input patch centered at a
pixel) to detect a predefined set of facial features from single RGB
images.

We formulate the feature detection process as a per-pixel classifica-
tion problem. During training, we construct a set of N = 21 classes
of keypoints. Each class corresponds a prominent facial feature
such as the nose tip or the left corner of the mouth. Figure 3(b)
shows all facial features considered by our local detection process.
At runtime, given an input patch centered at a pixel x, we want to
decide the likelihood that a particular feature c ∈ {1, ...,N} is lo-
cated at point x in the image.

We use randomized decision trees [Amit and Geman 1997; Lepetit
and Fua 2006] to train a classifier for automatic labeling of pixels.
For each randomized tree, similar binary tests are performed. The
feature function calculates the difference of intensity values of a
pair of pixels taken in the neighborhood of the classification pixel.
Specifically, at a given pixel x, the feature computes

f (x) = P(x+u)−P(x+v), (1)

where P(x) is the intensity value at pixel x. The parameters u and
v describe the offsets. We then infer feature locations from their
probability maps by detecting peaks of important modes. Meanshift
algorithm [Comaniciu and Meer 2002] is used to refine the location
of each extracted mode. Figure 3(a) shows the result obtained from
the local feature detection step.

4.1.2 KNN Search by Geometric Hashing

We now discuss how to utilize prior knowledge embedded in a train-
ing set of labeled facial images to remove misclassified features.
Due to classification errors, feature candidates inevitably contain
“outlier” features (e.g., the “outlier” feature in the right side of the
nose shown in Figure 3(a)). Similar to [Belhumeur et al. 2011], we
robustly search closest examples in a training set of labeled images
and use them to remove misclassified features. KNN search, how-
ever, requires computing the unknown similarity transformations



between the detection image and every training image. Instead of
adopting a RANSAC-based sampling procedure [Belhumeur et al.
2011], we propose to use geometric hashing to find the closest ex-
amples. Geometric hashing [Lamdan and Wolfson 1988] has been
successfully applied to 3D object detection and popular for its sim-
plicity and efficiency. The use of geometric hashing for KNN
search significantly improves the speed and accuracy of our search
process. Figure 3(b) and 3(c) show the detected feature after out-
lier removal and the closest examples obtained from searching a
training set of labeled facial images.

4.1.3 Facial Detection Refinement

We refine the feature detection results by complementing de-
tection with facial alignment using Active Appearance Models
(AAMs) [Matthews and Baker 2004]. Figure 3(d) show the im-
provement of feature locations as well as detection of non-salient
facial features via the refinement step.

We formulate the refinement process in an optimization framework.
The whole cost function consists of three terms:

E = w1EAAM +w2Edetection +w3Eprior, (2)

where the first term EAAM is Active Appearance Models (AAMs)
term, which measures the inconsistency between the input image
and the AAM model instance (for details, refer to [Matthews and
Baker 2004]). The second term is the detection term which pe-
nalizes the deviation of feature points from detected feature points
from Section 4.1.2. The third term is the prior term which ensures
the new feature points are consistent with 2D facial priors embed-
ded in K closest examples. In this work, we fit a Gaussian prior
based on K closest examples and obtain this term by applying the
negative log to the Gaussian distribution. The local priors reduce
bias towards the average face and avoid the problem of finding an
appropriate structure for global priors, which would necessarily be
high-dimensional and nonlinear.

We minimize the cost function by simultaneously optimizing the
shape and appearance parameters of the AAM model instance, as
well as the global similarity transformation for aligning the input
image with the AAM model instance. We analytically derive Jaco-
bian and Hessian of each objective term and optimize the function
in Lucas-Kanade registration framework via iterative linear system
solvers [Matthews and Baker 2004]. We initialize the shape pa-
rameter using the closest example of the input image. The appear-
ance parameters are initialized by the average appearance image of
AAM models. The optimization typically converges in 8 iterations
because of very good initialization and local facial priors obtained
from K closest examples. We set the weights of w1, w2 and w3 to
2, 1, and 0.001 respectively. During the iterations, we gradually
decrease the weight for the second term (w2) from 1 to 0.0001 in
order to ensure that the final feature locations can achieve a better
accuracy via AAM fitting.

4.1.4 Incorporating Temporal Coherence

Single frame feature detection can automatically infer the locations
of facial features from single RGB images but often with noisy and
unstable tracking results. In addition, our detection refinement pro-
cess builds upon AAMs and therefore might not generalize well to
new subjects that are significantly different from training databases.
This motivates us to utilize the temporal coherence to further im-
prove the robustness and accuracy of our facial detection and track-
ing process. We utilize previously registered facial images to in-
crementally update the Active Appearance Models (AAMs) on the
fly. During tracking, we maintain a buffer of registered facial im-
ages from previous frames and use them to incrementally update

the mean and eigen basis of AAMs based on an incremental learn-
ing method proposed by Ross et al. [2008]. Note that we only push
the registered frames whose corresponding AAM fitting errors are
below a particular threshold (0.6) into the buffer. Once the buffer
is full, we first check if the registered images in the buffer are suf-
ficiently far from the subspace of the current AAMs. When the
reconstruction residual is higher than a threshold (0.3), we update
the AAMs and then reinitialize the whole buffer. In our experiment,
we set the buffer size to 10.

Please refer to our supplementary material for evaluation of our fa-
cial detection component.

4.2 Non-rigid Structure from Motion

This step aims to reconstruct 3D feature positions and unknown
camera parameters across the entire sequence, which requires solv-
ing a non-rigid structure from motion problem. Our solution is
based on a prior-free non-rigid structure from motion method pro-
posed by Dai et al. [2012]. We choose their method because it is
purely convex, very easy to implement, and is guaranteed to con-
verge to an optimal solution. By assuming a weak perspective cam-
era model, the non-rigid structure from motion process reconstructs
camera motion and non-rigid shapes through a SVD based factor-
ization.

5 Reconstructing 3D Pose and Large-Scale
Deformation

This section describes our idea on how to reconstruct large-scale
facial geometry and 3D head poses from 2D feature locations ob-
tained from Section 4. We formulate this in a spacetime optimiza-
tion framework and simultaneously reconstruct large-scale defor-
mations and 3D head poses across the entire sequence. Direct es-
timate of large-scale deformations and 3D head poses throughout
the whole sequence is often time-consuming and memory inten-
sive. This motivates us to develop a keyframe based optimization
method to speed up the optimization process.

5.1 Representation and Formulation

We model large-scale facial deformation using multi-linear facial
models [Vlasic et al. 2005; Cao et al. 2013a]. Specifically, we pa-
rameterize large-sale facial deformation using two low-dimensional
vectors controlling “identity” and “expression” variation. As a re-
sult, we can represent large-scale facial geometry of the subject at
any frame using

M = R(Cr×2mT
id×3mT

exp)+T, (3)

where M represents large-scale facial geometry of an unknown sub-
ject. And R and T represent the global rotation and translation of the
subject. Cr is the reduced core tensor, and mid and mexp are iden-
tity and expression parameters respectively. Our multi-linear model
is constructed from FaceWarehouse [Cao et al. 2013b], which con-
tains face meshes corresponding to 150 identities and 47 facial ex-
pressions. In our experiment, the numbers of dimensions for the
identity and expression parameters are set to 50 and 25.

We assume that the camera projection is weak perspective. The
relationship between a 2D facial feature pk and its corresponding
large scale facial geometry model can be described as follows:

pk = sR((Cr×2mT
id×3mT

exp)
(k)

)+ t, (4)

where s is the scalar for the weak perspective projection and t rep-
resents the translation components on the image space. Note that



tz in T is dropped because of the weak perspective camera model
assumption.

Our goal herein is to estimate a number of unknown parameters, in-
cluding {R, t,s,mid ,mexp} j, across the entire sequence j = 1, ...,N.
Since the identity is the same throughout the whole sequence, the
parameters to be estimated in large-scale deformation reconstruc-
tion are mid ,{R, t,s,mexp} j, j = 1, ...,N.

We formulate large-scale deformation reconstruction in a spacetime
optimization framework by estimating all the parameters simultane-
ously, resulting in the following objective function:

argmin
mid ,{R,t,s,mexp} j=1,...,N

E f eature +w1Eid +w2Eexp +w3Es
exp +w4Es

pose,

(5)
where the first term is the f eature term that measures how well the
reconstructed facial geometry matches the observed facial features
across the entire sequence. The second and third terms are the prior
terms used for regularizing the identity and expression parameters,
which are formulated as multivariate Gaussians. The fourth and
fifth terms are the smoothness terms that penalize sudden changes
of expressions and poses over time. In all of our experiments, w1,
w2, w3 and w4 are set to 0.05, 0.005, 0.05 and 50, respectively.

The f eature term utilizes both the locations of 2D facial features
from facial feature detection and the 3D depth values of the re-
constructed facial features obtained from non-rigid structure from
motion, resulting in the following objective E f eature.

E f eature = E2d +wdEdepth, (6)

where the first and second terms evaluate how well the recon-
structed facial geometry matches the observed 2D facial features
and the 3D depth values of the reconstructed facial features. The
weight wd is experimentally set to 0.01.

5.2 Optimization

The direct estimate of large-scale facial geometry described in
Equation (5) is challenging because it requires solving a complex
nonlinear optimization problem with a huge number of unknowns.
We develop a keyframe based optimization algorithm to address
this challenge. Briefly, we first automatically select a number of
key frames to represent large-scale facial geometry across the entire
sequence. The extracted key frames allow us to divide the whole
sequence into multiple subsequences. We then simultaneously esti-
mate all the unknown parameters associated with all the key frames.
Lastly, for each subsequence, we keep the identity fixed and com-
pute the unknowns across the entire subsequence using the param-
eters reconstructed by keyframe optimization.

Keyframe extraction. Given 3D feature locations obtained from
non-rigid structure from motion, we aim to select a minimum set of
frames in such a way that 3D feature locations across the entire
sequence can be accurately interpolated by 3D feature locations
defined at key frames. We perform principle component analysis
(PCA) on 3D face shapes of the original sequence and obtain a PCA
subspace for accurately representing 3D face shapes at any frame.
We adopt a greedy strategy to find the optimal solution, initializing
the key frame list with all frames in the original sequence and then
incrementally decreasing it by one until the difference between the
original PCA subspace and the new PCA subspace spanned by the
remaining frames exceeds a user-specified threshold ε . The dif-
ference between the two PCA subspaces is measured by principal
angle [Wedin 1983], and is experimentally set to 0.4. The details of
our analysis algorithm are described in Algorithm 1.

Algorithm 1 Keyframe Extraction

Input: the N face shapes in a sequence V = {v1, ...,vN},and a tol-
erance threshold ε

Output: indices of the minimum key frames K

1: set K = {1, ...,N} //initialized as the full set of video frames
2: while 1 do
3: for i = 1, ..., |K| do
4: evaluate the subspace angle SA(V{K}−i,V )
5: end for
6: j =argmin

i
SA(V{K}−i,V )

7: minError = SA(V{k}− j,V )
8: if minError < ε then
9: K = {K}− j

10: else
11: break;
12: end if
13: end while
14: return K

Keyframe reconstruction. Since the number of the key frames is
usually small (11–16 in our experiment), we can estimate all the
unknown parameters at key frames using the objective function de-
scribed in Equation 5. This can be efficiently solved by coordinate-
descent optimization techniques. Note that we initialize poses and
camera parameters at key frames using the reconstruction results
obtained from non-rigid structure from motion.

Keyframe interpolation. This step uses the reconstructed identity
parameter, as well as the recovered parameters at key frames, to
compute the unknown parameters at intermediate frames. This can
be formulated as a keyframe interpolation problem. Specifically,
given the reconstructed parameters at the starting and ending key
frames, we estimate the parameters at inbetween frames in such
a way that it minimizes the objective function described in Equa-
tion 5. During reconstruction, we assume the identity parameter
is known and fixed. We initialize the camera parameters and pose
parameters using the results obtained from non-rigid structure from
motion. The expression parameters are initialized by tracking each
subsequence in a sequential manner.

6 Fine-scale Detail Recovery

Dynamic facial details such as emerging or disappearing wrinkles
are crucial for high-fidelity facial performance capture. This sec-
tion describes our idea on using shading cues to add fine-scale sur-
face details to large-scale deformation. Starting from large-scale
deformation results, we compute per-pixel depth values associated
with each input image, as well as unknown incident lighting and
face albedo, by minimizing the inconsistency between the “hypoth-
esized” and “observed” images.

6.1 Representation

We cast the fine-scale detail recovery problem as an image irra-
diance equation [Horn and Brooks 1989] with unknown lighting,
albedo, and surface normals. We assume the face is a Lambertian
surface. We further assume both lighting and face albedo are con-
stant throughout the whole sequence. The reflected radiance equa-
tion for a Lambertian surface is formulated as follows:

I(x,y) = ρR = ρ

∫
max(l(ωi ·n(x,y)),0)dωi, (7)



where I(x,y) represents the color of the pixel located at (x,y), ρ is
the albedo map, and the vector l indicates the lighting direction and
intensity, the vector n is the normal at the pixel located at (x,y), and
ωi represents a subtend solid angle in 3D space. R is the irradiance
of the surface.

Normal map representation. The normal for each pixel is rep-
resented by spherical coordinate (θ ,φ), i.e., nx = sinθ cosφ , ny =
cosθ cosφ and nz = sinφ .

Lighting and albedo. We assume that the surface of the face is
Lambertian with albedo ρ(x,y). The albedo is represented as RGB
values in texture space. We model the light reflected by a Lamber-
tian surface (referred to as the reflectance function) using spherical
harmonics [Basri and Jacobs 2003]

R(x,y)≈
N

∑
i=0

i

∑
j=−i

li jαiY i j(x,y), (8)

where li j are the lighting coefficients of the harmonic expansion,
αi are the factors that depend only on the order i, and Y i j(x,y) are
the surface spherical harmonic functions evaluated at the surface
normal. In practice, αi in the equation can often be omitted and the
reflection function becomes

R(x,y)≈ lTY (n(x,y)), (9)

with
Y (n(x,y)) = (1,nx,ny,nz,nxny,nxnz,nynz,
n2

x −n2
y ,3n2

z −1)T ,
(10)

where nx,ny,nz are the components of the surface normals n.

We now can synthesize an image based on the “hypothesized” light-
ing coefficients l, albedo map ρ(x,y) and a per-pixel normal esti-
mate n(x,y):

I(x,y) = lT ρ(x,y)Y (n(x,y)). (11)

6.2 Objective Function

We adopt an analysis-by-synthesis strategy to reconstruct fine-scale
facial geometry. Specifically, we reconstruct optimal normal maps
ni(x,y), i = 1, ...,N representing the facial details, as well as un-
known lighting coefficients l and albedo ρ(x,y), so that the “hy-
pothesized” image best matches the “observed” image. We formu-
late the problem as an optimization problem, resulting in the fol-
lowing objective function:

argmin
ρ,l,{ni}i=1,...,N

w1Edata+w2Ealbedo +w3Ereg +w4Eintegrability. (12)

In all of our experiments, the weights w1, w2, w3 and w4 are set to
1,10,15 and 50 respectively. Note that we assume the lighting and
albedo are constant across the entire sequence. Therefore, we can
combine shading cues throughout the whole sequence to model the
unknown lighting coefficients and albedo.

The data fitting term, Edata, measures the inconsistency between
the rendered and observed images at each frame:

Edata =
N

∑
i=1

∥∥∥Ii− lT ρY (ni(x,y))
∥∥∥2
. (13)

Similar to [Kemelmacher-Shlizerman and Basri 2011], we include
the two regularization terms to reduce the reconstruction ambiguity

for the albedo and normal maps, resulting in the second and third
terms of the objective function:

Ealbedo =
∥∥LoG(ρ)−LoG(ρre f )

∥∥2

Ereg =
∥∥LoG(ni)−LoG(ni,re f )

∥∥2
,

(14)

where Ealbedo and Ereg are the prior terms that are used to constrain
the reconstructed albedo and normal maps. The operator LoG rep-
resents the Laplacian of Gaussian filter. In our experiment, a texture
map provided by FaceWarehouse [Cao et al. 2013b] is used as the
reference albedo map ρre f and the reference normal map ni,re f is
initialized by normal maps of the reconstructed large-scale facial
geometry at each frame.

The integrability term, Eintegrability, is the integrability constraint
described in [Horn and Brooks 1986] to ensure that the recon-
structed normals can generate an integrable surface. Integrability
is a fundamental mathematical property of smooth (C2) surfaces. It
restricts the independence of the surface normal, so that

∂

∂y
(

nx

nz
) =

∂

∂x
(

ny

nz
). (15)

In our implementation, this constraint is formulated as:

Eintegrability =

∥∥∥∥ ∂

∂y
(

nx

nz
)− ∂

∂x
(

ny

nz
)

∥∥∥∥2
. (16)

Depth recovery. We now discuss how to estimate the depth from
the reconstructed normal map. We represent depth information on
image space. Given a pixel location (x,y), the depth value of its
corresponding surface point is represented as z(x,y). The surface
normal n(x,y) = [nx,ny,nz]

T can be obtained from the depth values
as follows:

n(x,y) =
1√

p2 +q2 +1
(p,q,−1)T , (17)

where p(x,y) = ∂ z/∂x and q(x,y) = ∂ z/∂y.

We approximate p(x,y) and q(x,y) using forward differences by

p(x,y) = z(x+1,y)− z(x,y)
q(x,y) = z(x,y+1)− z(x,y). (18)

Combining Equation (17) and (18), we obtain the following linear
constraints:

nzz(x+1,y)−nzz(x,y) = nx
nzz(x,y+1)−nzz(x,y) = ny.

(19)

Once the normal map is estimated, we can compute the corre-
sponding depth estimate by solving the following least-square fit-
ting problem:

argmin
zi

Enormal+wd1Edepth1 +wd2Edepth2. (20)

The first term, Enormal , evaluates how well the reconstructed depth
map matches the estimated normal map. We define the first term
based on linear equations described in Equation (18).

The second term, Edepth1, is a Laplacian regularization term that
preserves the geometric details in the reference mesh obtained from
large-scale facial geometry reconstruction. We have

Edepth1 =
∥∥LoG(zi)−LoG(zi,re f )

∥∥2
, (21)

where the operator LoG represents the Laplacian of Gaussian filter.



(a) (b) (c)

Figure 4: Reconstruction of detailed facial geometry, lighting and albedo: (a) the reconstructed facial geometry overlaid on the original
image; (b) and (c) show the reconstructed albedo and lighting.

The last term, Edepth2, prevents the estimated depth zi from being
away from the reference depth zi,re f . We have

Edepth2 =
∥∥zi− zi,re f

∥∥2
. (22)

We introduce this term because the reference depth maps, which
are initialized by results obtained by large-scale deformation re-
construction, are already close to actual facial geometry. This term
is critical to estimating the absolute depth values of each pixel be-
cause neither the normal fitting term (Enormal) nor the Laplacian
term Edepth1 can constrain the absolute depth values. Besides, this
term also provides the boundary constraints for the reconstructed
depth maps. In our experiments, we set the weights of boundary
pixels to a higher value (“10”) in order to stabilize the boundary
pixels.

6.3 Fine-scale Geometry Optimization

Similar to large-scale deformation reconstruction, we adopt
keyframe based optimization for reconstructing fine-scale facial ge-
ometry. Specifically, we first estimate the lighting coefficients,
albedo map, and depth maps at key frames by solving the opti-
mization problem described Section 6.2. We then use the estimated
lighting coefficients and albedo map to estimate the depth maps of
the rest frames.

We use shading cues of all the key frames to estimate the unknown
lighting coefficients l and albedo map ρ . We initialize the normal
maps using results obtained from large-scale geometry reconstruc-
tion. The albedo map is initialized by the reference albedo map.

• Step 1: we estimate the spherical harmonic coefficients l by
finding the coefficients that best fit the current albedo and the
current normal maps at all the key frames. This requires solv-
ing a highly over-constrained linear least squares optimization
with only nine or four unknowns (see the objective function
defined in Equation (13)), which can be solved simply using
least square techniques.

• Step 2: we update the albedo map ρ(x,y) in texture space
based on the estimated lighting coefficients l and the current
normal map. This requires optimizing an objective function
including the two terms (Edata and Ealbedo). The objective
function contains a linear set of equations, in which the first
set determines the albedo values, and the second set smooths
these values and can be optimized using linear system solvers.

• Step 3: we solve for normal maps by using the estimated light-
ing coefficients l and the updated albedo map ρ(x,y). This
requires solving nonlinear optimization described in Equa-
tion (12) except that we drop off the regularization term

Ealbedo. We analytically evaluate the Jacobian terms of the
objective function and run a gradient-based optimization with
the Levenberg-Marquardt algorithm [2009].

• Step 4: we solve for depth estimates at key frames by using the
estimated normal maps. This again requires solving a least-
square fitting problem described in Equation (20).

We repeat the procedure (Step 1, 2 and 3) iteratively, although in our
experiments two iterations seem to suffice. Note that the number
of degrees of freedom for lighting coefficients l can be either 4 or
9. We found similar results could be obtained by using the first
order and second order harmonic approximations, while the first
order approximation was more efficient. We thus use the first order
approximation for light representation (i.e., the length of l is 4).

Given the estimated lighting coefficients l and albedo ρ , the normal
maps for the rest of the sequence are estimated by solving the ob-
jective function described in Equation (12), except that we drop off
the prior term for albedo map (i.e., Ealbedo) and the optimization is
done for each single frame. Similar to Step 4, we apply least square
techniques to recover the depth maps from the reconstructed normal
maps for the rest of the sequence. Figure 4 shows the reconstructed
geometry, albedo and lighting for one frame of a test sequence.

7 Iterative Shape Refinement

Large-scale facial geometry reconstructed from high-level facial
features often does not accurately match actual facial geometry be-
cause of the lack of facial features in some regions such as cheeks.
We address the issue by iteratively refining large-scale facial geom-
etry using the per-pixel normal maps obtained from fine-scale detail
recovery process. In addition, we can further improve the accuracy
of normal maps by using refined large-scale facial geometry. The
two steps are repeated for a few times (3 in our experiment) to out-
put the final reconstruction result. In the following, we focus dis-
cussion on the first step as the second step is the same as fine-scale
detail recovery process described in Section 6.

To refine large-scale facial geometry using per-pixel normal maps,
we include an extra term, normal f itting term, into the objective
function described in Equation 5. The normal f itting term evaluates
how well the normals of the refined large-scale geometry match the
normal maps obtained from fine-scale detail recovery process. This
allows us to refine large-scale facial geometry for the whole face
region, especially the parts without salient features such as cheeks.
In practice, fine-scale facial details such as wrinkles often dominate
the normal fitting process because of large normal residuals. To ad-
dress the issue, we filter the normal maps obtained from fine-scale
detail recovery process by applying an exponential function to ad-
just the normal differences so that small differences are preserved



Figure 5: Large-scale facial geometry refinement: (left) the input
image; (middle) large-scale facial geometry before the refinement;
(right) large-scale facial geometry after the refinement. Note that
the nasolabial folds are lifted up with the constraint of fine-scale
normal map.

and large differences are marginalized. In our implementation, we
solve large-scale geometry refinement using Levenberg Marquardt
optimization [Lourakis 2009]. Note that we keep 3D head poses
fixed during the optimization and only the identity and expression
weights are refined. Figure 5 shows a side-by-side comparison be-
tween the original and refined large-scale facial geometry.

Displacement map. Because depth maps estimated from each
frame are view-dependent, fine-scale facial details invisible to the
camera are missing. The resulting depth maps are also difficult
to be integrated with large-scale facial geometry for facial render-
ing and manipulation. To address the challenges, we bake fine-
scale details (i.e., the difference between the estimated depth map
and large-scale facial geometry) into a displacement map. Briefly,
we describe each depth pixel as 3D points in a global coordinate
system and project them onto the texture space of large-scale face
mesh. Note that the texture map and the texture coordinates of
large-scale facial geometry are defined in advance by the artist.
We generate the displacement map by computing 3D offsets be-
tween the depth points and their corresponding points on the large-
scale facial geometry in the same texture space. We automatically
fill in missing displacement values by using Poisson image edit-
ing technique [Pérez et al. 2003]. Therefore, we can render the re-
constructed facial performances using large-scale face mesh and its
displacement map using GPU accelerated displacement mapping
techniques [Bunnell 2005].

8 Results and Applications

In this section, we first demonstrate the power and effectiveness of
our system by capturing a wide range of high-fidelity facial perfor-
mances using our proposed system (Section 8.1). We show our
system achieves the state-of-the-art results on video-based facial
capture by comparing against alternative systems (Section 8.2). We
quantitatively evaluate the performance of our system on synthetic
image data generated by high-fidelity 3D facial performance data
captured by Huang and his colleagues [2011] (Section 8.3). Finally,
we show novel applications of our reconstructed facial data in fa-
cial video editing (Section 8.4). Our results are best seen in the
accompanying video.

8.1 Test on Real Data

We evaluate the performance of our system on video sequences of
four different subjects with lengths ranging from 344 (11s) to 846
frames (28s). Three of videos (Greg, Ken and Bryan) are down-
loaded from the Internet. All of the test videos have a resolution of
640×360. Figure 6 shows some sample frames of our results.

8.2 Comparisons

We have evaluated the effectiveness of our system by comparing
against alternative techniques.

Figure 7: Comparison against Kemelmacher-Shlizerman and Basri
[2011] on real data. From left to right: input image, Kemelmacher-
Shlizerman and Basri [2011], and our result.

Comparison against Kemelmacher-Shlizerman and Basri
[2011]. Our fine-scale detail reconstruction builds on the suc-
cess of modeling fine-scale facial geometry from a single im-
age [Kemelmacher-Shlizerman and Basri 2011]. Figure 7 shows
a side-by-side comparison between our method and their method.
The reference face template required by [Kemelmacher-Shlizerman
and Basri 2011] is based on the neutral expression mesh model
of the subject. The same reference albedo is used in both meth-
ods. As shown in Figure 7, our system produces more fine-scale fa-
cial details and obtain more accurate geometry than [Kemelmacher-
Shlizerman and Basri 2011].

Comparison against Garrido et al. [2013]. We compare our
method against state of the art in facial performance capture us-
ing monocular videos [Garrido et al. 2013]. The test video is di-
rectly downloaded from their website. The resolution is 900×600
and the total number of frames is 538. Since ground truth data is
not available, we show a side-by-side visual comparison between
the two results. As shown in Figure 8, our method captures richer
details and produces better facial geometry than their method. Fig-
ure 8 also shows that our method is more robust to large pose vari-
ations and produces more accurate facial reconstruction results for
extreme head poses.

8.3 Evaluation on Synthetic Data

We evaluate the importance of key components of our system based
on synthetic data generated by high-fidelity facial data captured by
Huang and colleagues [2011]. The whole test sequence consists of
300 frames with large variations of expressions and poses. We use
ground truth head poses, facial geometry and texture to synthesize
a sequence of color images. The resolution of image data is set to
640×480.



Figure 6: High-fidelity facial performance capture: from left to right, we show the input image data, the reconstructed head poses and large-
scale facial geometry, the reconstructed high-fidelity facial geometry overlaid on the original image data, and the reconstructed high-fidelity
facial data. The subjects from top to bottom are Greg ( c©www.simplyshredded.com), Ken ( c©Ken Taylor), Bryan ( c©Hollywood Foreign Press
Association) and Tiana respectively.



Figure 8: Comparisons against Garrido et al. [2013]. From left to
right: input, their reconstruction results, and our results.

The experiment is designed to show the importance of three key
components of our facial reconstruction system: including “large-
scale geometry and pose reconstruction” described in Section 5,
“batch-based fine-scale geometry optimization” described in Sec-
tion 6, and “iterative shape refinement” described in Section 7. We
test four different methods on the synthetic data set. The four
methods are noted as “Kemelmacher-Shlizerman and Basri”, “Lin-
ear”, “Batch” and “Our method”, respectively. “Kemelmacher-
Shlizerman and Basri” [2011] initializes the template mesh using
the neutral expression model of the subject and applies the least
square algorithm to solve lighting coefficients, albedo and facial
geometry in each frame separately. Similar to “Kemelmacher-
Shlizerman and Basri”, “Linear” method solves facial geometry,
lighting coefficients, and albedo in each frame separately. However,
it improves “Kemelmacher-Shlizerman and Basri” by initializing
the reference template model and poses using large-scale geome-
try and poses obtained from Section 5. “Batch” method improves
“Linear” method by assuming constant lighting and albedo across
the entire sequence and solving the unknown lighting coefficients,
albedo and facial geometry based on shading cues throughout the
whole sequence. “Our method” further improves the “Batch”
method by running iterative shape refinement described in Sec-
tion 7.

Figure 9 shows average reconstruction errors for all methods. We
evaluate the reconstruction accuracy by computing the average nor-
mal direction discrepancy between ground truth normal maps and
normal maps reconstructed from each method. As we can see, the
fitting error decreases as we gradually improve the method.

8.4 Applications

With detailed facial geometry, albedo, and illumination recovered
from monocular video sequences, our method allows user to easily
edit the underlying geometry and albedo of the face.

Albedo editing. Albedo editing allows the user to edit the albedo

9

11

13

15

17

19

1 31 61 91 121 151 181 211 241 271

A
n

gu
la

r 
e

rr
o

r 

Frame ID 

K.Shlizerman and Basri Linear Batch Our method

Figure 9: Evaluation of key components of our system on syn-
thetic image data generated by high-fidelity facial data captured by
Huang and colleagues [2011].

Figure 10: Albedo editing: adding a beard (top) and large-scale
facial geometry editing (bottom). At the bottom row, the left two
images show the original and edited large-scale facial geometry.
The right two images show the original and edited image data.

map in texture space. Once the albedo map is edited, we can com-
bine it with the reconstructed lighting coefficients and captured fa-
cial geometry to render a new sequence of images based on the
rendering equation described in Equation (11). We further replace
the original video data with the “synthesized” video data based on
a user-specified mask. By solving Poisson equations with boundary
constraints at every frame, we seamlessly blend the rendered image
data with the original image data. Figure 10(top) shows two sam-
ple frames of albedo editing results, where we add a beard to the
subject.

Large-scale facial geometry editing. We can edit the underlying
large-scale facial geometry data at any frame and use the modified
facial geometry to edit facial video data across the entire sequence.
Figure 10(bottom) shows a video editing result based on large-scale
face geometry editing. In this example, we modify the underlying
facial geometry of the subject under the neutral expression. We then
transfer large-scale facial deformation of the subject to the new sub-
ject (i.e., the edited face) via the deformation transfer technique de-
scribed by [Sumner and Popović 2004]. Specifically, for every pixel
in the image, we find the corresponding point on the surface of the
original facial geometry and project the 3D offset between the orig-
inal and edited facial geometry onto the image space to obtain the
corresponding image displacement. The per-pixel image displace-
ment map is used to warp the original image into a new image (i.e.,
the edited image). Note that the expressions of the original sub-



Figure 11: Fine-scale geometric detail editing: wrinkle removal.
The first column shows the original facial geometry with fine geo-
metric details and the edited geometry after removing fine geomet-
ric details. The second and third columns show the video editing
results.

ject are faithfully transferred to the new facial subject because our
system can accurately reconstruct a space-time coherent 3D face
geometry.

Fine-scale facial editing. In Figure 11, we modify fine-scale facial
details reconstructed from the original video sequence to remove
the wrinkles across the entire sequence. For this purpose, we first
smooth the displacement map of each frame with a low-pass filter.
We then use the edited facial geometry, as well as the reconstructed
lighting coefficients and albedo, to render a new sequence of im-
ages. At a final step, we paste the “rendered” video data back to
the original video data in the same way as albedo editing. Note that
the shading details caused by fine-scale geometric details such as
wrinkles are removed in the edited video sequence, while skin tex-
ture details and appearance variations corresponding to large-scale
facial deformations are well preserved.

9 Conclusion and Limitations

In this paper, we have developed an end-to-end system that cap-
tures high-fidelity facial performances from monocular videos. The
key idea of our method is to utilize automatically detected facial
features and per-pixel shading cues, along with multilinear facial
models, to infer 3D head poses, large-scale facial deformation and
fine-scale facial detail across the entire sequence. Our system is
appealing for facial capture because it is fully automatic, offers the
lowest cost and a simplified setup, and can capture both large-scale
deformation and fine-scale facial detail. We have tested our system
on monocular videos downloaded from the Internet, demonstrating
its accuracy and robustness under a variety of uncontrolled lighting
conditions and overcoming significant shape differences across in-
dividuals. We have explored novel applications of captured facial
performance data in facial video editing, including removing wrin-
kles, adding a beard, and modifying underlying facial geometry.

The current system has a few limitations. First, it ignores cast
shadows, which can be created by the non-convex shapes on the
face. Figure 12(a) illustrates such a concern. Fine-scale geome-
try is overfitted around the right eye, the nostril, and the lip region

(a) (b) (c)

Figure 12: Limitations: reconstruction artifacts caused by strong
cast shadows, non-Lambertian reflectance and occlusions caused
by glasses. (a) shows artifacts produced by strong cast shadows
around the right eye, the nostril and the lip region; (b) shows arti-
facts due to non-Lambertian specular highlight on the forehead; (c)
shows the reconstruction result under significant occlusions caused
by sun glasses.

where strong cast shadows occur. Additionally, the current sys-
tem assumes the face has Lambertian reflectance. Human faces,
however, are not exactly Lambertian since specularities can be ob-
served in certain face regions. For example, the specular highlight
on forehead (Figure 12(b)) produces an incorrect ridge on the re-
constructed facial geometry. Finally, our system cannot distinguish
occlusions caused by facial hair, glasses, hands or other objects,
e.g., glasses shown in Figure 12(c). Though fine-scale details are
still recovered, artifacts are introduced due to the occlusions caused
by sun glasses. In the future, we would like to explore how to in-
tegrate shadow cues into the reconstruction framework and how to
extend the current framework to handle non-Lambertian facial re-
flectance.
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