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ABSTRACT

We present Steadiface, a new real-time face-centric video stabiliza-
tion method that simultaneously removes hand shake and keeps sub-
ject’s head stable. We use a CNN to estimate the face landmarks and
use them to optimize a stabilized head center. We then formulate an
optimization problem to find a virtual camera pose that locates the
face to the stabilized head center while retains smooth rotation and
translation transitions across frames. We test the proposed method
on fieldtest videos and show it stabilizes both the head motion and
background. It is robust to large head pose, occlusion, facial appear-
ance variations, and different kinds of camera motions. We show
our method advances the state of art in selfie video stabilization by
comparing against alternative methods. The whole process runs very
efficiently on a modern mobile phone (8.1 ms/frame).

Index Terms— video stabilization, real-time processing, mobile
platforms, machine learning, CNN

1. INTRODUCTION

Stable appearance of human faces is crucial for selfie videos, live
shows, or vlogging, which all are now popular features on mobile
phones. However, unintentional hand shakes and head translations
during recording can easily make the face unstable. Unfortunately,
most existing video stabilization methods do not stabilize selfie
videos well. The face motion, which is usually very different from
the background, can reamian unstable after stabilization.

We present Steadiface, a real-time gyro-based face-centric video sta-
bilization method that simultaneously removes hand shake and keeps
head stable. Moreover, it runs real-time on the mobile phone without
delaying the video stream, and provides the WYSIWYG user experi-
ence. The proposed method uses the gyroscope to obtain the camera
motions and an efficient CNN to extract the face landmarks. We
then formulate an optimization problem to jointly stabilize the cam-
era and head motion. We also dynamically control the weighting in
the optimization process for robustness.

Steadiface is highly efficient: it takes only 8.1 ms/frame on Google
Pixel 3 (Qualcomm Snapdragon 845 CPU, Adreno 630 GPU). We
tested it on many videos with challenging head poses, occlusions,
and camera motions, and obtained good results in all cases [1].

This work has made the following contributions:

* The first real-time end-to-end stabilization system that simul-
taneously stabilizes both head and camera motion.

* A novel algorithm that combines both face and gyro stable-
ness into a single objective function for joint optimization.

* An effective weight adjustment scheme robust to head pose
variance and noisy landmark locations.

* We perform extensive comparisons between our method and
the state-of-the-art ones.
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Fig. 1. Steadiface algorithm pipeline.
2. BACKGROUND

The electronic video stabilization systems usually consist of three
components: motion estimation, motion compensation and image
composition [2]. There are two popular motion estimation methods:
image based and sensor based. Given the estimated motion profiles,
motion compensation creates a smooth motion via filtering [3] or
optimization [4], and image composition adjusts the input video into
a stabilized one via shifting or warping. Modern methods also handle
rolling shutter distortions during warping [5, 4, 3].

There are also non-electronic video stabilization methods, such as
mechanical gimbal or the optical image stabilizer (OIS). However,
they do no work for face centric videos and we skip them here for
brevity.

Sensor-based stabilization methods use gyroscope, OIS or their
combinations to model the camera model as rotation and transla-
tion, and stabilize the videos by smoothing the virtual pose changes
[3, 6, 7]. Our work is mostly related to the fused video stabilization
as used in Google Pixel 3 [7]. Similarly, we extract the gyroscope
signal to integrate as the camera pose, and warp the frame by di-
viding the input frame into a mesh and warp each part separately to
handle the rolling shutter distortion [5]. Our key novelty is to detect
faces and tracks the facial landmarks from the input frame, and fuse
both gyro and face information to estimate the best joint face and
background stability.

Image-based stabilization methods detect/track the features across
video frames, and stabilize the motion by smoothing the camera path
[8,9, 10, 11]. As the feature tracking is noisy or camera motion esti-
mation can be difficult in degenerated cases, most methods focus on
improving the robustness. However, they are not designed to handle
dominant moving subjects like faces.

Yu and Ramamoorthi proposed an image-based method for face-
centric stabilization [12]. The head motion is modeled as the 3D
head center of the reconstructed head, and the background motion
is tracked by dense optical flow. An optimization for homogra-
phy and additional mesh adjustment is performed to obtain the best
trade-off between face and background stability. However, their ap-
proach is slow and sensitive to motion estimation errors. The re-
quired 3D face reconstruction, despite the advances from 3D fitting
using 2D landmarks [13, 14, 15, 16] to direct regression/CNN in-
ference [17, 18, 19], can be either slow or power-consuming for the
video recording task on a mobile phone.

Our method is different from theirs in four parts. First, we use 2D fa-
cial features to represent the head motion without expensive 3D head



reconstruction. Second, we use gyroscope to obtain the camera mo-
tion and do not require feature tracking or optical flow. Third, we use
a two-step process to explicitly control the head stability and avoid
error accumulations. We first estimate a stabilized head trajectory
and then optimize the virtual camera pose to align the face to that
trajectory. Finally, we use a novel metric for head and background
stability with dynamic weight adjustment to handle pose variations
and noisy landmarks.

3. REAL-TIME VIDEO STABILIZATION

Steadiface takes the input video frame as well as gyroscope readout
as inputs, and outputs a warping mesh that warps the original video
frame to the stabilized result. The overall pipeline is shown in Fig. 1.
First, face information is extracted from the input video frame, in-
cluding face bounding box and 2D facial landmarks. We then esti-
mate a smooth target head trajectory from the landmark locations.
A joint optimization then takes the gyroscope, face information, and
head trajectory to find the optimal vitrual camera pose. Finally the
warping is aplied to transform the input frame to the stabilized one.

All processings are performed at each frame sequentially, and in the
following discussions, we will drop the frame index or time value
for brevity. We will describe the first two steps in this section.

3.1. Face Information Extraction

This step takes the video frame as input, detects the face bounding
boxes, select the best face to process, and then infers its facial land-
marks.

We get the face bounding box from the face detec-
tion (several popular ones work equally well in our
experiments), and then feed the cropped face into a
CNN to obtain the dense landmarks . The network
architecture is a variant of the mobile net [20] which
takes 192 x 192 x 3 input image and returns 133 x 2
2D facial landmark coordinates (see inset). Our GPU implementa-
tion can perform at 5.4ms per face on Snapdragon 845.

P

Face of Interest Selection Due to the time budget, we only select
one face to stabilize. We use a simple yet effective method: for the
first frame that contains face(s), we use the largest one returned by
the face detection module. We then keep tracking and stabilizing this
face until it is lost.

3.2. Smooth Head Trajectory Estimation

In this section, we describe how to obtain a smooth head trajectory
from the 2D landmarks, which will be the target head center we want
to put the face to. This smoothing step is critical as some landmarks
can have flickering or gross errors. We model this as an optimization
that keeps the head as stable as possible while not causing the virtual
frame to move beyond the real frame domain. The objective function
is defined as

argminggwi [|H — Ho1[[3 + wz max(/H = Cla,y)/dres)?,
st |H — Clg,y <, (1)

where H is the target 2D center on the stabilized virtual frame
domain, H ; is the head center of the previous frame, C =

1/N =, L; is the 2D landmark center over the landmarks {Ly, ..., Ly}

and d,.y is a reference deviation that we can tolerant. If the target
head center is not too far away from the real center, the second
term would be small. Thus, H will tend to be stable as its previous
location. Otherwise, the second term will produce a large penalty

and force H to follow the real landmark center C. r is the cropping
ratio at each side of the frame after stabilization.

4. VIRTUAL CAMERA POSE OPTIMIZATION

With the extracted face information {L;} and the target head center
H, we now describe how to estimate the virtual camera pose so that it
fits the face center to the target one, and meanwhile keeps the virtual
camera pose changing smoothly across frames.

4.1. Representation

Unlike previous images-based methods that use free-form transfor-
mations [4, 11], we restrict the stabilized camera to have a valid
rotation and a shifted projection. This approach greatly reduces the
degree of freedom in optimization and improves the robustness. We
represent the virtual camera pose as a set of 3D rotation and 2D
translation:

Py = {rvyt}7 (2)
where r, is rotation represented by quaternion and t = [t,, ty}T
is 2D principal offset to the projection center. Note that the pose,
rotation and translation are all functions of time, and we drop the
time index for brevity.

The virtual camera intrinsic matrix is K, = [fv,0,0.5 + ta;
0, fv,0.5 4 ty; 0,0, 1], where f, is the virtual focal length, which is
manually chosen and fixed in our system.

We represent the real camera pose and intrinsic matrix in a similar
way: Pr = {r,,0} and K, = [f,0,0.5; 0, f»,0.5;0,0,1]. The
real camera does not have principal point shift, and focal length f; is
obtained by calibration. r, is the integration of the angular velocity
signal from the gyroscope [3].

Given K, and r, of the current frame, the projection of an image
point from the real camera domain to virtual camera domain is de-
cided by a homography transform:

II(P,, Pr) = KUR’U(K,,‘RT)il‘ 3)

where R is the matrix form of the rotation r. The projection of a
2D facial landmark L from the input image to the stabilized virtual
domain is

proj(L, Py, Pr) = IT - [La, Ly, 1] 7. 4)

Note that if t = 0, this transform would only work for objects suf-
ficiently far away from the camera. The additional principal offset
enables us to properly transform close subject like faces.

4.2. Objective Function

The goal of stabilization is to find the optimal virtual camera pose P,
at each frame. For real-time viewfinder and streaming applications,
we also want to calculate these values without relying on future (non-
casual) information. We cast this process as an optimization problem

to minimize the following objective function:
argming wyEy(Py) + wala(ry) + woFo(ry)+ )
erT(rv) + thi (t') + wPEP (P'U)

The fixed inputs, such as P,., {L;} and H, are skipped in the argu-
ment for brevity.

" The landmark fitting term Ey measures the fitting error of the pro-

jected landmarks to the target center:

Ef(Py) = |lproj(Li, Py, Pr) — HJ5. (6)



The distortion term E4 measures the spherical angle ) between r,,
and r,:

E4(ry) = (logistic(Q(ry, r,)) - Q(ry, 1)) (7

A logistic regression function is applied here so that the penalty is
close to zero when 2 is smaller than a threshold, and increases when
Q) becomes large. In other words, this term tolerants the virtual-real
camera pose difference within a threshold, and creates large penalty
after the difference is further increased.

The rotation following term E, measures how the virtual camera
follows the real camera. Unlike the distortion term above, it consis-
tently puts a penalty if the virtual camera rotation is different from
the real camera rotation. The goal is to reduce the change of hitting
boundary due to the virtual camera being too stable.

Eo(ry) = |ty — r.]]3. (8)

The rotation smoothness term E,. measures how smooth virtual rota-
tion changes across frames. It consists of two terms, which controls
the CO and C1 smoothness.

E.(ry) = wr,collre — I‘v,—1H§

®

+ Wr,C1 Hrvr;il — rv,flr;iQHg,

where the subscript —1 and _» denote values from the previous and
previous-previous frames, respectively.

Similarly, the translation smoothness term F, measures how smooth
the principal offset changes across frames, which are

Ei(t) = we,collt — t1||3 + weo1||2t-1 — (t 4+ t_2)[|3.  (10)

Finally, the protrusion term E,, measures how the warped frame pro-
trudes the real image boundary:

Ep(Py) = |[protrude(Py, P;) /a3, (11)

where protrude(P,, P,) is the amount that the warped frame pro-
trudes the real image boundary (we actually make it more sensitive
by shrinking the real image boundary to a smaller bounding box),
and « is a reference protrusion value we can tolerate (see Fig. 2).
This concept was introduced for post-processing in [6], and here we
combine it into the joint optimization process.

4.3. Optimization

The objective function can be effectively solved by non-linear least
square solver such as Ceres [21]. For the first frame, we initialize the
virtual camera pose to identify rotation and zero offset. For the fol-
lowing frames, we initialize r, by applying the real camera rotation
between current and previous frames to the previous virtual camera
rotation, and t,, with the previous virtual principal offset:

Py = {(rrr;’il)rvﬁl,t,l}. (12)

The optimization usually converges within 3 iterations and runs at
2.7ms/frame on Snapdragon 845.

4.4. Dynamic Optimization Weight Adjustments

Up to now, we are able to stabilize the face motion based on 2D
landmarks and gyro. However, there are three practical issues re-
mained. First, when camera is relatively stable, users are expecting
a stable virtual camera. However, face translations will move the vir-
tual camera around as it follows the face. Second, the virtual camera

protrusion

N

Fig. 2. Protrusion visualization. A protrusion is the amount that the
warped video frame (blue) protrudes the the stabilized frame (green)
which is cropped from the full frame (black).
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Fig. 3. 2D head center trajectory and the power spectrum
with/without the fitting term E'y.

will move when user is simply rotating the head. This is because the
2D landmark center is not pose-invariant. Finally, the landmarks can
be noisy especially when the face rotates away from the camera. The
optimized virtual camera pose will jitter in these cases.

To address these challenges, we dynamically adjust the optimiza-
tion weights based on gyro and landmarks. First, we examine the
mean magnitude of angular velocity over a period, and adjust wy
proportionally. Next, we decrease the fitting weight and increase
the smoothness weights when face pose is large. Finally, we check
the variations of landmark center and scales and decrease the fitting
weight if they are large. As a result, the final virtual camera motion
does not move with face when camera is stable or head pose is fast
changing, and robust to noisy landmark locations.

Protrusion Handling The final stabilized frame is a center crop
from the warped frame (Fig. 2), and any protruded area would be
undefined. In rare cases, protrusions can still occur, and we elim-
inate them by binary searching between P, and P,.. If the binary
search failed (no valid solution), we apply the previous warping di-
rectly to the current frame.

5. RESULTS

In this section, we first demonstrate the effectiveness of our method
on videos with a variety of head and hand motions. We show our
method stabilizes both the head motion and the background, and is
robust to large head pose variations (e.g. v0, v7 in the accompanying
video [1]), illumination changes (e.g. v0, v5) and occlusions (e.g.
vl, v2). We then validate the method by evaluating the importance
of each term. Next, we compare our method with the state-of-the-art
gyro-based stabilization on mobile phone [7]. Finally, we compare
our method with the state-of-the-art selfie video stabilization method
[12]. Our results show comparable or better face stability, and do not
suffer from artifacts caused by unreliable optical flow/landmarks.
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Fig. 5.  Virtual camera rotation and principal point offset
with/without smoothness terms. With those terms, the camera (rota-
tion and translation) becomes smoother while the head center (top)
remains stable. This shows that both the head and background are
properly stabilized.

We tested our method on 43 videos with a combination of different
head motions, expressions (e.g. talking to camera, looking around)
and hand motions (e.g. tripod, walking, panning). All results are
generated with the identical parameter set, and they are best seen in
the accompanying video at [1].

5.1. Importance of Each Term

We show the importance of each term by disabling them during the
optimization. Fig. 3 shows the head trajectory and power spectrum
with/without the fitting term Ey. As we can see, the head remains
unstable when stabilizing using only gyro, and the fitting term effec-
tively reduces the head motion and produces a lower power density
over frequencies. Note that the stabilized trajectory is not perfectly
smooth as it is a trade-off between the fitting term and other terms.

Fig. 4 shows the deviation between the virtual camera pose and the
real camera pose during fast panning. Clearly, the rotation following
term E, makes the virtual pose well defined when multiple solutions
exist and the solution that is close to the real pose is selected. Mean-
while, the distortion term E, further refines the solution space by
adaptively imposing penaulty when the real-virtual rotation devia-
tion tends to be large.

Finally, the Fig. 5 shows the rotation and principal offset curves
with/without the smoothness terms which demonstrates their neces-
sity for balancing the head and background stability.

5.2. Comparison to State-of-the-art Gyro-based Method

We now compare our method with the fused video stabilization
(FVS) [7] on Google Pixel 2/3. It is rated as one of best video
stabilization solutions on mobile phones by many reviews. We show
the stabilization effect by averaging the consecutive 15 frames (0.5s)
in Fig. 6.

Fig. 6. Head stabilitiy visualization. Each frame is the average of
consecutive 15 frames. For each triplet: (a) input video with video
id in the accompanying video [1], (b) results by the fused video sta-
bilization [7], and (c) our results.

Fig. 7. Comparison against video stabilization method in [12]. Each
frame is the average of consecutive 15 frames. For each pair: (a)
results by Yu and Ramamoorthi [12] with video id in the accompa-
nying video [1], and (b) our results.

As we can see, the face and background are blurry in the inputs due
to shaky motions. FVS stabilizes the background, but exaggerates
the foreground head motion. In contrast, our Steadiface outputs sta-
ble head motion across frames while maintaining a good trade-off
for background stability. Note that our method uses a smaller crop-
ping ratio (15%) than FVS does (20%). This makes stabilization
more challenging, but we can preserve more field-of-view for users.

5.3. Comparison to State-of-the-art Image-based Method

Finally, we compare Steadiface with the selfie video stabilization
method [12] (Fig. 7). Note that their solution cannot reach real-
time performance even on a desktop. The face stability of Steadiface
is comparable or slightly better than them. Meanwhile, Steadiface
does not suffer from quick jittering when landmark detection/optical
flow fails (e.g. the shaky background at bottom left of Fig. 7). One
drawback is the cropping ratio. Their method dynamically adjusts
the crop and can preserve wider field-of-view sometimes.

In sum, we present Steadiface, a new real-time face-centric video
stabilization method that simultaneously removes hand shake and
keeps subject’s head stable. It can work with different types of cam-
era motions, and is robust to large head pose, occlusion and facial
appearance variations. It is also highly efficient and runs at 8.1
ms/frame with a single core on Google Pixel 3.
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